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Crystallographlc Planes
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Crystallographic Planes

+ Miller Indices: Reciprocals ofthe (three) axial
intercepts fora plane, cleared of fractions &
common multiples. All parallel planes have
same Miller indices.

+ Algorithm
1. Read offintercepts of plane with axes in
terms of @, b, ¢
2. Take reciprocals of intercepts
3. Reduce to smallestinteger values
4. Enclose in parentheses, no
commasi.e., (hk)
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Crystallographic Planes
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Crystallographic Planes
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Crystallographic Planes (HCP)

+ In hexagonal unit cells the same idea is used
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Crystallographic Planes

‘We want to examine the atomic packing of
crystallographicplanes
Iron foil can be used as a catalyst. The
atomic packing of the exposed planesis
important.
a) Draw (100) and (111) crystallographic planes
for Fe

b) Calculatethe planar density for each of these
planes
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Planar Density of (100) Iron

Solution: AtT < 912°C iron has the BCC structure
D repeat unit
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Planar Density of (111) Iron

Solution (cont): (111) plane 1 atom in plane/ unit surface call
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Section 3.16 - X-Ray Diffraction
Electromagnetic Spectrum
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X-Rays to Determine Crystal Structure
+ Incoming X-rays diffract from crystal planes.
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SUMMARY

+ Atoms may assemble into crystaliine or
amorphous structures.

+ Common metallic crystal structures are FCC, BCG, and
HCP. Coordination number and atomic packing factor
are the same for both FCC and HCP crystal structures.

+ We can predict the density of a material, provided we
know the atomic weight, atomic radius, and crystal
geometry (e.q, FCC, BCC, HCP).

« Crystallographic points, directions and planes are
specified in terms of indexing schemes.
Crystallographic directions and planes are related
to atomic inear densties and planar densities.
ea®
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SUMMARY

+ Materials can be single crystals or polycrystaline.
Material properties generally vary with single crystal
orientation (i.e., they are anisotropic), but are generally
non-directional (i.e., they are isotropic) in polycrystals
with randomly oriented grains.

+ Some materials can have more than one crystal
structure. This is referred to s polymorphism (or
allotropy).

« Xeray diffraction is used for crystal structure and
interplanar spacing determinations.

e @




image1.png
Section 3.8 Point Coordinates

Point coordinates for unit cell
center are

a2, 62,02 %%%

Point coordinates for unit cell
comerare 111

Translation: integer multiple of
lattice constants > identical
position in another unit cell
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Crystallographic Directions
Algorithm
1. Vector repositioned (if necessary) to pass
through origin
2. Read off projections in terms of
unit cell dimensions 2 b, and ¢
> 3. Adjust to smallest integer values
4. Enclose in square brackets, no commas
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Linear Density

Number of atoms

+ Linear Density of Atoms = LD = .y ferormor arection vector

[1J0]
ex: lineardensity of Alin [110]
direction
2=0405nm

EXY qQ #atoms \‘I
LD -

length /'-
cor )





image4.png
HCP Crystallographic Directions

i Algorithm
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HCP Crystallographic Directions
* Hexagonal Crystals

— 4 parameter Miller-Bravas lattice coordinates are
related to the direction indices (i.e., /Vw)as

follows.
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